Chapter 7 Practice Test, lessons 1 - 6

1. Solve the system by graphing:

$$x+y=8$$

$$3x - y = 4$$

2. Solve the linear system by graphing.

$$x + y = 1$$

$$3x - y = -5$$

3. Use substitution to solve the linear system.

$$3x - y = 15$$

$$x+2y=-2$$

4. Use substitution to solve the linear system.

$$x-4y=6$$

$$2x + y = -4$$

Solve by elimination:

$$5. \quad 2x + 2y = 4$$

$$3x - 2y = 16$$

a.
$$(4, -2)$$

b.
$$(0, 2)$$

c.
$$(12, -2)$$

a.
$$(4,-2)$$
 b. $(0,2)$ c. $(12,-2)$ d. no solution

Solve the system:

6.
$$3x + 4y = 4$$

$$3x + y = 10$$

7. Solve the system.

$$y = -\frac{3}{4}x + \frac{1}{4}$$

$$y = \frac{3}{4}x - \frac{3}{4}$$

8. Solve the system by adding or subtracting.

$$9x - 7y = -77$$

$$-3x - 9y = 3$$

9. Use elimination to solve the linear system.

$$3x+2y=-5$$

$$4x - 3y = 16$$

- 10. x pounds of candy valued at \$3.50 per pound is mixed with y pounds of candy valued at \$4.30 per pound to produce 10 pounds of a mixture selling for \$4 per pound. Find x and y, the number of pounds of each type.
- 11. Find the solution of the system, if it exists.

$$4x - 2y = 3$$

$$2x - y = 10$$

12. Writing: Without graphing, tell which pair(s) of equations below make a system of equations with one solution. Explain how you know.

A.
$$5x - y = 3$$
 B. $3y - 6x = -12$ C. $3y + 2 = 6x$

13. Writing: Without graphing, tell which pair(s) of equations below make a system of equations with no solutions. Explain how you know.

A.
$$4y - 8x = -6$$
 B. $3x - 4y = 2$ C. $4y + 2 = 8x$

14. Graph the system of linear inequalities.

$$y \leq -2x-1$$

$$y \leq 3$$

Name:

ID: A

Solve the system of inequalities graphically:

15.
$$y \ge -2x - 1$$
$$y < -2$$

Name:		
	 	

ID: A

____ 16. Graph the solution set of the system of inequalities: $5x + 3y \ge 15$, $x \ge y$, $x \le 6$

a.

b.

c.

d.

17. Write a system of linear inequalities that defines the shaded region.

Chapter 7 Practice Test, lessons 1 - 6 Answer Section

2. (-1, 2)

- 3. (4, -3)
- 4. $\left(-\frac{10}{9}, \frac{16}{9}\right)$
- 5. A
- 6. (4, -2)
- 7. $\left(\frac{2}{3}, -\frac{1}{4}\right)$
- 8. (-7, 2)
- 9. (1, -4)
- 10. x = 3.75 lb; y = 6.25 lb
- 11. No solution
- 12. Both A and B, and A and C; the slope of the graph of equation A is 5 while that of equations B and C is 2. So, the graphs of A and B intersect in exactly one point, as do the graphs of A and C. Since the graphs of equations B and C have the same slope and different y-intercepts, they are parallel and do not intersect.
- 13. A and C; the slope of equations A and C is 2 and the two graphs have different y-intercepts, so the two lines are parallel and do not intersect. Since the graph of equation B has slope $\frac{3}{4}$, it will intersect the graphs of equations A and C.

14.

- 15.
- 16. A
- $17. \quad y \le 2x + 2$ $y \ge 2x 7$